考虑一个面板数据设置,其中可获得对个人的重复观察。通常可以合理地假设存在共享观察特征的类似效果的个体组,但是分组通常提前未知。我们提出了一种新颖的方法来估计普通面板数据模型的这种未观察到的分组。我们的方法明确地估计各个参数估计中的不确定性,并且在每个人上具有大量的个体和/或重复测量的计算可行。即使在单个数据不可用的情况下,也可以应用开发的想法,并且仅向研究人员提供参数估计与某种量化的不确定性。
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Generative adversarial networks are a promising tool for image generation in the astronomy domain. Of particular interest are conditional generative adversarial networks (cGANs), which allow you to divide images into several classes according to the value of some property of the image, and then specify the required class when generating new images. In the case of images from Imaging Atmospheric Cherenkov Telescopes (IACTs), an important property is the total brightness of all image pixels (image size), which is in direct correlation with the energy of primary particles. We used a cGAN technique to generate images similar to whose obtained in the TAIGA-IACT experiment. As a training set, we used a set of two-dimensional images generated using the TAIGA Monte Carlo simulation software. We artificiallly divided the training set into 10 classes, sorting images by size and defining the boundaries of the classes so that the same number of images fall into each class. These classes were used while training our network. The paper shows that for each class, the size distribution of the generated images is close to normal with the mean value located approximately in the middle of the corresponding class. We also show that for the generated images, the total image size distribution obtained by summing the distributions over all classes is close to the original distribution of the training set. The results obtained will be useful for more accurate generation of realistic synthetic images similar to the ones taken by IACTs.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Developing safe and useful general-purpose AI systems will require us to make progress on scalable oversight: the problem of supervising systems that potentially outperform us on most skills relevant to the task at hand. Empirical work on this problem is not straightforward, since we do not yet have systems that broadly exceed our abilities. This paper discusses one of the major ways we think about this problem, with a focus on how to turn it into one that can be productively studied empirically. We first present an experimental design centered on choosing tasks for which human specialists succeed but unaided humans and current general AI systems fail. We then present a proof-of-concept experiment following meant to demonstrate a key feature of this experimental design and show its viability with two question-answering tasks: MMLU and time-limited QuALITY. On these tasks, we find that human participants who interact with an unreliable large-language-model dialog assistant through chat -- a trivial baseline strategy for scalable oversight -- substantially outperform both the model alone and their own unaided performance. These results are an encouraging sign that scalable oversight will be tractable to study with present models and bolster recent findings that large language models can productively assist humans with difficult tasks.
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
联合学习(FL)是以保护隐私方式在异质客户设备上进行机器学习的框架。迄今为止,大多数FL算法都在多个回合中学习一个“全局”服务器模型。在每回合中,相同的服务器模型都向所有参与的客户端广播,在本地更新,然后跨客户端进行汇总。在这项工作中,我们提出了一个更一般的过程,客户“选择”了发送给他们的值的程序。值得注意的是,这使客户可以在较小的数据依赖性切片上操作。为了使这种实用性,我们概述了原始的联合选择,该选择可以在现实的FL系统中进行特定于客户的选择。我们讨论了如何使用联合选择进行模型培训,并表明它可以导致通信和客户记忆使用情况的急剧减少,从而有可能使模型的训练太大而无法适合处个设备。我们还讨论了联邦选择对隐私和信任的含义,这反过来影响了可能的系统约束和设计。最后,我们讨论有关模型体系结构,隐私保护技术和实用FL系统的开放问题。
translated by 谷歌翻译
本文提出了一种估计条件平均治疗效果的新方法。它称为TNW-CATE(可训练的Nadaraya-Watson回归CATE),并且基于以下假设:控制数量相当大,而处理的数量很少。 TNW-CATE使用Nadaraya-Watson回归来预测对照组和治疗组的患者的结果。 TNW-CATE背后的主要思想是通过使用特定形式的重量分享神经网络来训练Nadaraya-Watson回归的内核。该网络在控件上进行了训练,并用一组具有共享参数的神经子网代替标准内核,使每个子网都实现了可训练的内核,但是整个网络都实现了Nadaraya-Watson估计器。网络记住特征向量如何位于特征空间中。当源和目标数据的域相似时,所提出的方法类似于传输学习,但任务不同。各种数值仿真实验说明了TNW-CATE,并将其与众所周知的T-Learner,S-Learner和X-Learner进行比较,以进行几种类型的对照和治疗结果函数。 https://github.com/stasychbr/tnw-cate提供了实施TNW-CATE的算法的代码。
translated by 谷歌翻译
计算机科学的关键任务之一是缩短各种数据类型的处理时间,即图像,这对于不同领域至关重要 - 从医学和物流到虚拟购物。与经典计算机相比,量子计算机能够进行并行数据处理,从而减少了数据处理时间。量子计算机的这种质量激发了对量子技术适用于现实生活任务的潜力的深入研究。在较小的输入数据上已经揭示了一些进展。在这项研究工作中,我旨在通过跳过中间测量步骤来减少处理时间的输入数据(我使用图像从2 x 2到8 x 8)。假设是,对于增加的输入数据,每个量子卷积层之后的中间测量步骤的省略将改善输出度量结果并加速数据处理。为了检验假设,我进行了实验,以在每个网络中选择最佳的激活函数及其导数。该假设在输出平方误差(MSE)方面得到了部分证实 - 在经典卷积神经网络(CNN)训练的结果下,该假设从0.25下降到量子卷积神经网络(QCNN)训练的结果。然而,就训练时间而言,在CNN中为1.5分钟,在最小冗长的训练迭代中为4小时37分钟,该假设被拒绝。
translated by 谷歌翻译
提出了一个新的基于注意力的升压机(GBM)的模型,称为AgBoost(基于注意力的梯度提升),以解决回归问题。拟议的AGBOOST模型背后的主要思想是将带有可训练参数的注意力分配给GBM的迭代,条件是决策树是GBM中的基础学习者。注意力的重量是通过应用决策树的特性和使用Huber的污染模型来确定的,该模型在注意力的参数和注意力重量之间提供了有趣的线性依赖性。这种特殊性使我们能够通过线性约束解决标准二次优化问题来训练注意力权重。注意力重量还取决于折现因子作为调整参数,这决定了重量的影响随迭代次数减少的程度。对两种类型的基础学习者,原始决策树和具有各种回归数据集的极为随机树进行的数值实验说明了所提出的模型。
translated by 谷歌翻译